Feature Selection and Classification Pairwise Combinations for High-dimensional Tumour Biomedical Datasets

A. Dziomdziora A. Wosiak

Lodz University of Technology Institute of Information Technology

Theoretical Foundations of Machine Learning, 2015

Outline

- Introduction
- Methodology
 - Methodology Overview
 - Data Preprocessing
 - Feature Selection
 - Classification
 - Verification of Results
- Case Study and Experimental Results
 - Data Description
 - Experiments Assumptions
 - Experimental Results
- Conclusions

Introduction

- High-dimensional nature of biomedical data
 - hundreds or thousands of features,
 - a few samples.
- Dimensionality reduction appears to be crucial for the effective classification of tumour samples.
- Solution: dimensionality reduction
 - feature extraction,
 - feature selection.

Main Objectives

- The goal of the research: to create a comparison of pairwise combinations of feature selection methods and classification techniques applied to the problem of binary and multi-class cancer classification.
- Contribution: to constitute an independent contribution to the relevant literature and try to find a successful way to perform efficient feature selection enhancing accurate classification of tumour specimens.
- Evaluation: six different either binary or multi-class cancer microarray gene expression datasets.

Outline

- Introduction
- Methodology
 - Methodology Overview
 - Data Preprocessing
 - Feature Selection
 - Classification
 - Verification of Results
- Case Study and Experimental Results
 - Data Description
 - Experiments Assumptions
 - Experimental Results
- 4 Conclusions

Methodology Foundation

- High-throughput technologies provide the opportunity to examine a large number of biological samples.
- High amounts of multivariate data corresponding to different biological aspects.
- Problem: there are only a few samples available it increases the risk of overfitting the data and leads to unsatisfactory classification of new data points
- Solution: feature selection

Methodology Overview

- Data preprocessing, which results in the initial dataset
- Feature selection, which enables the choice of the set of attributes crucial for the automated diagnosis
- Classification process based on the attributes derived from the previous step
- Verification by assessing appropriate comparison criteria

Data Preprocessing

- Data preprocessing includes two main steps:
 - excluding housekeeping genes,
 - normalization.
- Housekeeping genes
 - take part in basic cell maintenance,
 - may provide serious redundancy and noise into the classification,
 - Affymetrix housekeeping genes identifiers are marked in datasets by the prefix "AFFX-".
- The values in the datasets are normalized every gene expression value is characterized by mean of zero and unit variance.

Feature Selection

- Feature selection:
 - improves the generalization performance concerning the model created using the entire set of features,
 - offers a substantially more robust generalization and a faster response with test data,
 - enables researchers to gain a deeper insight into the underlying processes that generated the data.

9 / 33

Feature Selection

- Seven different approaches were implemented:
 - Correlation-based Feature Selection,
 - Chi-squared,
 - Information Gain,
 - Gain Ratio,
 - Symmetrical Uncertainty,
 - ReliefF,
 - SVM-RFE.
- All of these feature selection methods except for SVM-RFE belong to filter algorithms.

Classification

- Six different approaches were implemented:
 - J48,
 - logistic model trees,
 - Bayes network,
 - Naïve Bayes,
 - k-nearest neighbours,
 - sequential minimal optimization algorithm for training support vector machines.

Verification of Results

- Comparison criteria:
 - accuracy,
 - sensitivity,
 - specificity,
 - FP rate,
 - precision,
 - root mean square error,
 - number of features.

Outline

- Introduction
- Methodology
 - Methodology Overview
 - Data Preprocessing
 - Feature Selection
 - Classification
 - Verification of Results
- Case Study and Experimental Results
 - Data Description
 - Experiments Assumptions
 - Experimental Results
- 4 Conclusions

- binary Colon Cancer Dataset,
- binary Lung Cancer Dataset,
- binary ALL/AML Dataset,
- multiclass Lymphoma Dataset,
- multiclass GCM Dataset,
- binary CNS Dataset.

- Colon Cancer Dataset
 - various patterns of gene expression levels obtained by clustering of tumour and normal colon tissues,
 - 40 tumour biopsies (negatives) and 22 normal biopsies (positives) extracted from colons of the same patients,
 - no missing values in the dataset.
- Lung Cancer Dataset
 - 181 tissue samples: 31 instances belonged to MPM (Malignant Pleural Mesothelioma) and 150 belong to ADCA (Adenocarcinoma) type of the human lung cancer,
 - 12533 genes for each sample,
 - no missing values in the dataset.

ALL/AML Dataset

- two acute cases of leukaemia: acute lymphoblastic leukaemia (ALL) and acute myeloblastic leukaemia (AML),
 training dataset included 38 bone marrow samples (27 ALL and 11
- AML), over 7129 probes from 6817 human genes,
- testing data of 34 observations was provided, with 20 ALL and 14 AML,
- no missing values in the dataset.

Lymphoma Dataset

- distinct types of diffuse large B-cell lymphoma identified by gene expression profiling,
- 96 observations with 11 classes,
- 4026 attributes and 19667 missing values in the dataset missing values were filled in using a filter on the basis of the mean value of each attribute.

CNS Dataset

- heterogeneous group of embryonal tumours of the central nervous system (CNS),
- 60 samples,7129 features in total,
- two classes: 21 survivors (1) and 39 failures (0),
- no missing values.

GCM Dataset

- Global Cancer Map is a multiclass cancer diagnosis dataset,
- 190 human tumour examples of 15 types,
- 16063 attributes in total,
- 144 samples of training data and 46 samples of testing data,
- no missing values in the dataset.

Dataset	No.	Initial no.	No. of features	No of
name	of samples	of features	after pre-processing	classes
ALL/AML	72	7129	7070	2
CNS	60	7129	7070	2
Colon	62	2000	1988	2
Lung	181	12600	12533	2
Lymphoma	96	4026	4026	11
GCM	192	16063	16004	14

Description of Experiments

- The experiments were based on the Weka data mining tool.
- 10-fold cross-validation was used in order to assess the accuracy of the J48, LMT, IBk and SMO.
- The 66% split option was used in the case of Naïve Bayes and Bayes Network classifiers.
- The original division into test set and training set was maintained wherever possible.

The results of classification performed using all the features

Dataset	Classif.	No of		Comp	parison	criteria	
	method	features	ACC	SENS	SPEC	FP rate	RMSE
ALL / AML	SMO	7070	100.000	1.000	1.000	0.000	0.000
CNS	SMO	7070	95.000	0.950	0.929	0.071	0.224
Colon	SMO	1988	93.548	0.935	0.924	0.076	0.254
Lung	LMT	12533	96.059	0.961	0.945	0.055	0.121
Lymphoma	SMO	4026	94.792	0.948	0.987	0.013	0.266
GCM	SMO	16004	67.361	0.674	0.981	0.019	0.245

Best classification results for Information Gain/CFS feature selection

Dataset	Classif.	No of	Comparison criteria				
	method	features	ACC	SENS	SPEC	FP rate	RMSE
ALL/AML	SMO	34	100.000	1.000	1.000	0.000	0.000
Lymphoma	Naive Bayes	152	100.000	1.000	1.000	0.000	0.000
Colon	SMO	27	100.000	1.000	1.000	0.000	0.000
Lung	SMO	143	98.522	0.985	0.978	0.022	0.317
CNS	SMO	38	98.333	0.983	0.991	0.009	0.129
GCM	SMO	42	81.250	0.813	0.989	0.011	0.243

Best classification results for Chi-squared feature selection

Dataset	Classif.	No of	Comparison criteria				
	method	features	ACC	SENS	SPEC	FP rate	RMSE
ALL/AML	SMO	150	100.000	1.000	1.000	0.000	0.000
Lung	SMO	150	97.044	0.970	0.946	0.054	0.318
Lymphoma	NaiveBayes	150	93.939	0.939	0.981	0.019	0.062
Colon	SMO	150	93.548	0.935	0.924	0.076	0.254
CNS	SMO	150	95.000	0.950	0.929	0.071	0.224
GCM	SMO	150	62.500	0.625	0.977	0.023	0.246

Best classification results for InfoGain feature selection

Dataset	Classif.	No of		Comparison criteria					
	method	features	ACC	SENS	SPEC	FP rate	RMSE		
ALL/AML	SMO	150	100.000	1.000	1.000	0.000	0.000		
CNS	SMO	150	95.000	0.950	0.929	0.071	0.224		
Colon	SMO	150	93.548	0.935	0.924	0.076	0.254		
Lung	SMO	150	97.044	0.970	0.946	0.054	0.318		
Lymphoma	SMO	150	93.750	0.938	0.984	0.016	0.266		
GCM	SMO	150	59.722	0.597	0.976	0.024	0.246		

Best classification results for Gain Ratio feature selection

Dataset	Classif.	No of	Comparison criteria				
	method	features	ACC	SENS	SPEC	FP rate	RMSE
ALL/AML	SMO	150	100.000	1.000	1.000	0.000	0.000
CNS	SMO	150	95.000	0.950	0.929	0.071	0.224
Colon	SMO	150	93.548	0.935	0.924	0.076	0.254
Lung	SMO	150	95.074	0.951	0.913	0.087	0.319
Lymphoma	LMT	150	78.125	0.781	0.950	0.050	0.183
GCM	IBk	150	56.944	0.569	0.975	0.025	0.194

Best classification results for Symmertical uncertainty feature selection

Dataset	Classif.	No of	Comparison criteria				
	method	features	ACC	SENS	SPEC	FP rate	RMSE
ALL/AML	SMO	150	100.000	1.000	1.000	0.000	0.000
Colon	SMO	150	93.548	0.935	0.924	0.076	0.254
Lung	Naive Bayes	150	98.551	0.986	0.967	0.033	0.076
Lymphoma	SMO	150	93.750	0.938	0.986	0.014	0.266
CNS	SMO	150	95.000	0.950	0.929	0.071	0.224
GCM	LMT	150	58.333	0.583	0.973	0.027	0.213

Best classification results for ReliefF feature selection

Dataset	Classif.	No of	Comparison criteria				
	method	features	ACC	SENS	SPEC	FP rate	RMSE
ALL/AML	Naive Bayes	150	100.000	1.000	1.000	0.000	0.000
Lymphoma	Naive Bayes	150	100.000	1.000	1.000	0.000	0.000
Colon	SMO	150	88.709	0.887	0.887	0.123	0.336
Lung	Naive Bayes	150	98.551	0.986	0.967	0.033	0.076
CNS	SMO	150	86.677	0.867	0.818	0.182	0.365
GCM	LMT	150	58.333	0.583	0.620	0.026	0.206

Best classification results for Information Gain/SVM-RFE feature selection

Dataset	Classif.	No of	Comparison criteria				
	method	features	ACC	SENS	SPEC	FP rate	RMSE
ALL/AML	Naive Bayes	150	100.000	1.000	1.000	0.000	0.000
Colon	SMO	150	95.161	0.952	0.932	0.068	0.220
Lung	SMO	150	98.522	0.985	0.978	0.022	0.317
Lymphoma	Naive Bayes	150	100.000	1.000	1.000	0.000	0.000
CNS	SMO	150	91.667	0.917	0.889	0.111	0.289
GCM	SMO	150	73.611	0.736	0.984	0.016	0.244

Comparison of no. of features and accuracy with and without FS

Dataset	No of features	No of features	Features	ACC	ACC	ACC
	without FS	after FS	reduction [%]	without FS	after FS	diff. [%]
ALL/AML	7070	34	99.52	100.00	100.00	0.00
CNS	7070	150	97.88	95.00	95.00	0.00
Colon	1988	150	92.45	93.55	95.16	+1.61
Lung	12533	150	98.80	96.06	98.55	+0.967
Lymphoma	4026	150	96.27	94.79	93.94	-0.85
GCM	16004	42	99.74	67.36	81.25	+13.89

Outline

- Introduction
- 2 Methodology
 - Methodology Overview
 - Data Preprocessing
 - Feature Selection
 - Classification
 - Verification of Results
- Case Study and Experimental Results
 - Data Description
 - Experiments Assumptions
 - Experimental Results
- 4 Conclusions

Conclusions and Future Work

- The classification of high-dimensional biomedical datasets is regarded as a challenging task.
- The enormous dimensionality of the microarray expression data is a serious concern during gene selection.
- Multi-class classification issues are more difficult than the binary ones
 researches are conducted and often succeed in new approaches.

Conclusions and Future Work

- It was demonstrated that the hybrid strategies (classification algorithms and feature selection methods) resulted in more satisfactory outcomes.
- The SMO classifier outperforms other classification methods in the majority of cases.
- The SVM-RFE algorithm combined with SMO classification was considered as the most beneficial choice for constructing the learning model.

Conclusions and Future Work

- Future works:
 - to involve other algorithms and strategies,
 - other combinations of various classifiers and attribute selectors should be investigated in depth,
 - the results of our research can be further implemented in practice for Lodz Medical University Hospital No 4.

Thank you for your attention.

